28. February  2018

Layered oxides for rechargeable zinc batteries

Layered oxides can form the basis of high-performance materials for battery electrodes. A KAUST team has developed a cheap and simple technique that creates this crucial element for rechargeable zinc-ion cells.

Lithium-ion batteries power most of our everyday electronic devices, such as cell phones and laptop computers. But there is a growing need to store energy on much larger scales, such as retaining the electricity generated by solar cells for use at night. Scaling technology up to such an industrial-level application is expensive and presents serious safety issues, including toxicity and the flammability of the electrolytes.

The team, led by Husam Alshareef, is instead developing zinc-ion batteries that use a water-based electrolyte, which has the advantages of being air stable, safe, environmentally friendly and cheap. “Aqueous batteries based on zinc ions can offer a safer, cost-effective solution to lithium ion batteries for grid storage,” says Alshareef. “Further, they use more environmentally friendly materials than lead-acid batteries.”

Lithium-ion and zinc-ion batteries work by electrically storing ions in an electrode. During charging, ions flow through an electrolyte from one electrode to another, where they are captured by a process known as intercalation. This means that electrode materials are key to optimizing a battery’s performance.

Please read the complete article at the following link: LINK